26 октомври 2021
Категории
  •  Космос
  •  Физика
  •  Науки за земята
  •  Биология
  •  Медицина
  •  Математика
  •  Научни дискусии
  •  Разни
FACEBOOK

Живеем ли в квантов свят? (видео)

Физиците все още се опитват да примирят два различни свята: квантовия и макросвета.

| ПОСЛЕДНА ПРОМЯНА 15 юли 2021 в 00:01 96050
Кредит: Public Domain-Merket 1.0

Нека си признаем - квантовата механика наистина е объркваща. Всички правила на физиката, с които сме свикнали, в квантовата област просто излитат през прозореца. 

Поставете частица в кутия. Според класическата физика (и здравия разум) тази частица трябва да остане в тази кутия завинаги. Но при квантовата механика тази частица може просто да бъде извън кутията следващия път, когато погледнете.

В класическата физика може да измерите импулса и позицията на нещо с произволна степен на точност. Не е така в квантовия свят - колкото повече знаете за едното, толкова по-малко знаете за другото.

Вълна ли е или частица? Според класическата гледна точка можете да изберете само едно от двета. Но според квантовата механика нещо може да бъде и двете.

Квантовият свят е труден за разбиране, но в един момент правилата на субатомния свят отстъпват на правилата на макроскопичния.

Но как? Не сме съвсем сигурни и това беше дълго, странно пътуване в опит да се даде отговор на този въпрос.

Атомът 

Първият човек, който постави някои полезни етикети върху квантовия свят, бе физикът Нилс Бор. В началото на 1900 г. учените по целия свят започват да се пробуждат за странното и неочаквано поведение на атомните и субатомните системи. След десетилетия изтощителна работа те осъзнават, че определени свойства, като енергията, идват на отделни пакети, наречени „кванти“. И докато физиците започват да очертават математическа основа, за да обяснят тези експерименти, никой все още не е разработил пълна, последователна рамка. 

Бор е един от първите, които се опитват да го направят. И макар да не представя пълна теория на квантовата механика, той полага сериозни основи. Бор също така популяризира някои идеи, които ще се превърнат в крайъгълните камъни на съвременната квантова теория.

Първият е ранния му опит да моделира атома. През 20-те години на миналия век чрез различни много експерименти учените са научили, че атомът е направен от тежко, плътно, положително заредено ядро, заобиколено от рояк малки, леки, отрицателно заредени електрони. Също така се знаеше, че тези атоми могат да абсорбират или излъчват лъчение само при много специфични енергии.

Бор поставя електроните "в орбита" около ядрото, като се въртят около това плътно ядро ​​като планети в слънчева система. В истинска слънчева система планетите могат да имат каквато орбита им хареса. Но в атома на Бор електроните са залепени на малки траектории и могат да имат само определени предварително определени орбитални разстояния. 

Като скача от една орбита на друга, атомът може да получава или излъчва радиация при специфични енергии. По този начин се кодира неговата квантова природа.

Квантова връзка

Но Бор добавя още един интересен момент. Има много потенциални начини за изграждане на квантов модел на атома - защо трябва да се използва този? Той открива, че когато електроните са в орбита много далеч от ядрото, тяхната квантова природа изчезва и атомът може да бъде отлично описан от класическия електромагнетизъм. Просто се мотаят две заредени частици.

Това е т.нар. Принцип на съответствието и аргументът на Бор е, че неговият модел на атома е най-добрият. Може да имате каквато си пожелаете квантова теория, но правилните са тези, които отстъпват място на класическата физика под някаква граница. В случая с неговия атом, когато електроните се отдалечават от ядрото.

Моделът на атома на Бор е непълен и по-късно е заменен от модела на валентния електронен слой, който е останал и до днес. Но неговият  Принцип на съответствието продължава да живее и той формира крайъгълен камък на всички квантови теории, които идват - насочваща светлина, която позволява на физиците да конструират и избират правилната математика, за да опишат субатомния свят.

Но Бор не спира дотук. Той твърди, че въпреки че този Принцип на съответствието позволява връзка между квантовия и класическия свят, тези два свята не са еднакви. 

Всичко идва по двойки

Приблизително по същото време, когато Бор е разгадавал всичко това, приятелят му Вернер Хайзенберг предлага своя известен Принцип на неопределеността. Опитайте се да измерите позицията на малка частица и в крайна сметка ще загубите информация за нейния импулс. Опитвайки се обратното - да определите импулса й и ще останете в неведение относно позицията й.

Бор взе тази идея и я реализира. Той разглежда Принципа на неопределеността на Хайзенберг като част от много по-голям аспект на квантовия свят - че всичко идва по двойки. Помислете за най-известната двойка в квантовия свят, вълната и частицата. В класическите системи нещо е или само вълна, или само частица. Може да се избере или едното, или другото, за да се класифицира някакво поведение. Но в квантовата механика тези две свойства са сдвоени - всичко е едновременно и частица, и вълна и винаги проявява свойствата и на двете.

Хипотетично решение на вероятностната плътност за уравнението на Шрьодингер и класическия анализ. Кредит: applet-magic.com, Thayer Watkins, Silicon Valley & Tornado Alley

Освен това в основата си квантовите правила са основани на вероятности - квантовата механика средно възпроизвежда само класическата физика. Въз основа на тези два извода Бор твърди, че квантовата теория никога не може да обясни класическата физика. С други думи, атомите и други подобни работят по един набор от правила, а влаковете и хората работят по друг набор от правила. Те могат и трябва да бъдат свързани чрез Принципа на съответствието, но във всичко останало живеят отделни и паралелни светове.

Прав ли е Бор? Някои физици твърдят, че просто не сме работили достатъчно усилено и че наистина живеем в квантов свят и че можем да възпроизведем класическата физика на основата на чисто квантови правила. Други физици твърдят, че Бор вече го направиюл и не е нужно повече да говорим за това. Повечето просто са се задълбочили в математиката, без да се притесняват твърде много за това..

Източник:  Do We Live in a Quantum World?
Paul Sutter, space.com


Няма коментари към тази новина !

 
Още от : Физика
Всички текстове и изображения публикувани в OffNews.bg са собственост на "Офф Медия" АД и са под закрила на "Закона за авторското право и сродните им права". Използването и публикуването на част или цялото съдържание на сайта без разрешение на "Офф Медия" АД е забранено.