100-годишен патент на Никола Тесла се оказа полезен и днес

Учените изследват неизследвано устройство на Тесла и намират нови възможности в 100-годишно негово изобретение

Ваня Милева Последна промяна на 18 май 2021 в 00:01 12011 0

Снимка с двойна експозиция на Никола Тесла през декември 1899 г., седнал в лабораторията си в Колорадо Спрингс до неговия увеличител на предавателя с високо напрежение, докато машината произвежда огромни електрически светкавици. Кредит: Wikimedia Commons

Клапан, изобретен от инженер Никола Тесла преди век, е не само по-функционален от реализираните по-рано, но има и други потенциални приложения днес, установи екип изследователи след провеждане на поредица от експерименти за възпроизвеждане на конструкцията му от началото на 20-ти век, съобщава Scitech daily.

Новите констатации, съобщени в списание Nature Communications, предполагат, че устройството на Тесла, което той е нарекъл „клапан-тръба“, може да притъпи вибрациите в двигателите и други машини при изпомпване на гориво, охлаждащи течности, смазочни материали и други газове и течности.

Сега известен като клапан на Тесла, патентованото устройство е вдъхновило стратегии за насочване на флуиди в мрежи и вериги.

„Забележително е, че това 100-годишно изобретение все още не е напълно разбрано и може да бъде полезно в съвременните технологии по начини, които все още не са изгледани“, обяснява Лейф Ристроф (Leif Ristroph), доцент в Института по математически науки на Нюйоркския университет водещ автор на статията. „Докато Тесла е известен като магьосник на електрически токове и електрически вериги, неговата по-малко известна работа за управление на флуидни потоци наистина е изпреварила времето си“.

(а) Схема, модифицирания патент на Тесла, показваща изглед - план, поглед отгоре на клапана на Тесла. (b) Изображение на тръбопровода, използван в експеримента. Горният и долният капак сандвич на вътрешната геометрия, която е дигитализирана от проекта на Тесла, изрязана и свързана с лазер. Съответните размери включват обща дължина L, средна мокра ширина w и дълбочина d. (c) Схема на барокамерата. Механизмите за преливане осигуряват фиксирани нива на водата, които задвижват потока през тръбата, чиято действителна ориентация е показана на b. Разликата във височината Δh варира и обемният дебит Q се измерва както в посока напред, така и в обратна посока.

Клапанът на Тесла - серия от взаимосвързани контури с форма на капка - е проектиран да пропуска потоци течност само в една посока и без движещи се части. Устройството осигурява свободен път за потока напред и по-бавен за обратния поток - но този последен недостатък всъщност сочи към потенциална, нереализирана полза при обстоятелства, когато потоците трябва да се направляват.

Сравнение на потоците в обратна посока (отдясно наляво) при три различни скорости. Водният поток се визуализира със зелени и сини багрила, което показва, че потоците все повече се нарушават при по-високи скорости. Кредит: YU’s Applied Mathematics Laboratory

За да разберат функционалността на клапана, Ристроф и неговите съавтори провеждат поредица от експерименти в лабораторията за приложна математика на Нюйоркския университет. Тук те повтарят конструкцията на клапана на Тесла и го подлагат на тестове, измерващи неговата устойчивост на преминаващ поток в двете посоки.

Като цяло изследователите откриват, че устройството реагира малко като прекъсвач. При ниски дебити няма разлика в съпротивлението за двете  посоки на поток, но над определена скорост на потока устройството рязко се „включва“ и значително възпира обратния поток.

„Най-важното е, че това регулиране действа чрез генерирането на турбулентност при обратна посока на потоците, което „запушва“ тръбата с вихри и нарушени течения“, обяснява Ристроф. „Освен това турбулентността се появява при далеч по-ниски скорости на потока, отколкото някога са били наблюдавани досега за тръби с по-стандартни форми - до 20 пъти по-ниска скорост от конвенционалната турбуленция в цилиндрична тръба или тръбопровод. Това показва мощността на този начин на управление на потоците, който може да се използва в много приложения".

Освен това изследователите откриват, че клапанът работи още по-добре, когато потокът не е постоянен - ​​когато идва на импулси или пулсации, които след това устройството преобразува в плавен и насочен изходен поток. Това помпено действие имитира AC-DC токоизправителите, които трансформират променлив ток в постоянен ток.

Разрез на аналогична флуидна верига с четири диола на Тесла и пулсиращ източник на потока. Кредит: Nguyen, Q.M., Abouezzi, J. & Ristroph, L. Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve. Nat Commun 12, 2884 (2021). https://doi.org/10.1038/s41467-021-23009-y

„Смятаме, че това е имал предвид Тесла за устройството, тъй като е мислил за аналогични операции с електрически токове“, отбелязва Ристроф. „Всъщност той е най-известен с това, че е изобретил AC мотор, както и AC-DC преобразувател“.

Днес, като се има предвид способността на клапана да контролира потоците и да генерира турбуленция при ниски скорости, Ристроф вижда възможности за изобретението на Тесла от началото на 20-ти век.

„Устройството на Тесла е алтернатива на конвенционалния възвратен клапан, чиито движещи се части са склонни да се износват с времето“, обяснява Ристроф. „И сега знаем, че той е много ефективен при турбуленция и може да се използва за овладяване на вибрациите в двигателите и машините за изпомпване на гориво, охлаждаща течност, смазка или други газове и течности.“

Справка: Nguyen, Q.M., Abouezzi, J. & Ristroph, L. Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve. Nat Commun 12, 2884 (2021). https://doi.org/10.1038/s41467-021-23009-y

Източник: Scientists Explore Tesla Roads Not Taken – And Find Potential New Utility in 100-Year-Old Invention, Scitech daily

Най-важното
Всички новини
За писането на коментар е необходима регистрация.
Моля, регистрирайте се от TУК!
Ако вече имате регистрация, натиснете ТУК!

Няма коментари към тази новина !